Agent Run
An AgentRun
represents a complete agent run. It contains a collection of Transcript
objects, as well as metadata (scores, experiment info, etc.).
- In single-agent (most common) settings, each
AgentRun
contains a singleTranscript
. - In multi-agent settings, an
AgentRun
may contain multipleTranscript
objects. For example, in a two-agent debate setting, you'll have oneTranscript
per agent in the sameAgentRun
. - Docent's LLM search features operate over complete
AgentRun
objects. Runs are passed to LLMs in their.text
form.
Usage
AgentRun
objects require a dictionary of Transcript
objects, as well as a BaseAgentRunMetadata
object. In the base metadata object, you must specify scores
.
from docent.data_models import AgentRun, Transcript, BaseAgentRunMetadata
from docent.data_models.chat import UserMessage, AssistantMessage
transcripts = {
"default": Transcript(
messages=[
UserMessage(content="Hello, what's 1 + 1?"),
AssistantMessage(content="2"),
]
)
}
agent_run = AgentRun(
transcripts=transcripts,
metadata=BaseAgentRunMetadata(
scores={"correct": True, "reward": 1.0},
)
)
If you want to add additional fields to your metadata, see here for instructions on subclassing.
Rendering
To see how your AgentRun
is being rendered to an LLM, you can print(agent_run.text)
. This might be useful for validating that your metadata is being included properly.
docent.data_models.agent_run
AgentRun
Bases: BaseModel
Represents a complete run of an agent with transcripts and metadata.
An AgentRun encapsulates the execution of an agent, storing all communication transcripts and associated metadata. It must contain at least one transcript.
Attributes:
Name | Type | Description |
---|---|---|
id |
str
|
Unique identifier for the agent run, auto-generated by default. |
name |
str | None
|
Optional human-readable name for the agent run. |
description |
str | None
|
Optional description of the agent run. |
transcripts |
dict[str, Transcript]
|
Dict mapping transcript IDs to Transcript objects. |
metadata |
BaseAgentRunMetadata
|
Additional structured metadata about the agent run. |
Source code in docent/data_models/agent_run.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
|
text
property
Concatenates all transcript texts with double newlines as separators.
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
A string representation of all transcripts. |
serialize_metadata
serialize_metadata(metadata: BaseAgentRunMetadata, _info: Any) -> dict[str, Any]
Custom serializer for the metadata field so the internal fields are explicitly preserved.
Source code in docent/data_models/agent_run.py
to_text
Represents an agent run as a list of strings, each of which is at most token_limit tokens under the GPT-4 tokenization scheme.
We'll try to split up long AgentRuns along transcript boundaries and include metadata. For very long transcripts, we'll have to split them up further and remove metadata.
Source code in docent/data_models/agent_run.py
model_dump
Extends the parent model_dump method to include the text property.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
Any
|
Variable length argument list passed to parent method. |
()
|
**kwargs
|
Any
|
Arbitrary keyword arguments passed to parent method. |
{}
|
Returns:
Type | Description |
---|---|
dict[str, Any]
|
dict[str, Any]: Dictionary representation of the model including the text property. |
Source code in docent/data_models/agent_run.py
get_filterable_fields
Returns a list of all fields that can be used to filter the agent run, by recursively exploring the model_dump() for singleton types in dictionaries.
Returns:
Type | Description |
---|---|
list[FilterableField]
|
list[FilterableField]: A list of filterable fields, where each field is a dictionary containing its 'name' (path) and 'type'. |
Source code in docent/data_models/agent_run.py
AgentRunWithoutMetadataValidator
Bases: AgentRun
A version of AgentRun that doesn't have the model_validator on metadata. Needed for sending/receiving agent runs via JSON, since they incorrectly trip the existing model_validator.
Source code in docent/data_models/agent_run.py
text
property
Concatenates all transcript texts with double newlines as separators.
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
A string representation of all transcripts. |
serialize_metadata
serialize_metadata(metadata: BaseAgentRunMetadata, _info: Any) -> dict[str, Any]
Custom serializer for the metadata field so the internal fields are explicitly preserved.
Source code in docent/data_models/agent_run.py
to_text
Represents an agent run as a list of strings, each of which is at most token_limit tokens under the GPT-4 tokenization scheme.
We'll try to split up long AgentRuns along transcript boundaries and include metadata. For very long transcripts, we'll have to split them up further and remove metadata.
Source code in docent/data_models/agent_run.py
model_dump
Extends the parent model_dump method to include the text property.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
Any
|
Variable length argument list passed to parent method. |
()
|
**kwargs
|
Any
|
Arbitrary keyword arguments passed to parent method. |
{}
|
Returns:
Type | Description |
---|---|
dict[str, Any]
|
dict[str, Any]: Dictionary representation of the model including the text property. |
Source code in docent/data_models/agent_run.py
get_filterable_fields
Returns a list of all fields that can be used to filter the agent run, by recursively exploring the model_dump() for singleton types in dictionaries.
Returns:
Type | Description |
---|---|
list[FilterableField]
|
list[FilterableField]: A list of filterable fields, where each field is a dictionary containing its 'name' (path) and 'type'. |